## **Redox Reactions**

## **Assertion Reason Questions**

a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choice.

- (a) Both (A) and (R) are true and (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
- (c) (A) is true but (R) is false.
- (d) (A) is false but (R) is true.
- **1. Assertion (A):** Oxidation-Reduction (Redox) couple is the combination of oxidised and reduced form of a substance that is involved in Oxidation-Reduction half cell.

**Reason (R):**As in representation  $E^{\circ}Fe^{3}+/Fe^{2+}$  and  $E cu^{2}+/cu+$  are two Redox couples.

**Ans.** (c) (A) is true but (R) is false.

**Explanation:** Oxidation-Reduction (Redox) couple is the combination of oxidised and reduced form of a substance. Here, E° Fe<sup>3</sup>+/Fe<sup>2</sup>+ and E°Cu<sup>2+</sup> /cu+, represent reduction potential values.

**2. Assertion (A):** H<sub>2</sub>SO<sub>4</sub> cannot act as a reducing agent.

**Reason (R):** Sulphur cannot increase its oxidation state beyond +6.

**Ans.** (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

**Explanation:** Maximum oxidation state of S is +6, it cannot exceed it. Therefore, it cannot be further oxidised. Thus, H2SO4 cannot act as a reducing agent.

**3. Assertion (A):** In a redox reaction, the oxidation number of oxidant decreases while that of reductant increases.

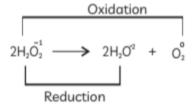
**Reason (R):** Oxidant gains electron(s) and reductant lose electrons.

**Ans.** (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

**Explanation:** During a redox reaction, the oxidant gains electrons and is reduced. Hence, its oxidation number decreases also, the reductant loses electrons and is oxidised, thus its oxidation number increases.








**4. Assertion (A):** The hydrogen of decomposition peroxide to form water and oxygen of is an example disproportionation

**Reason (R):** reaction. The oxygen of peroxide is in -1 oxidation state and it is converted to zero oxidation state in  $O_2$  and  $O_2$  oxidation state in  $O_2$ 0.

Ans. (a) Both (A) and (R) are true and (R) is the correct explanation of (A).

## **Explanation:**



Therefore, the above reaction is an example of disproportionation reaction.

